
SoilWise project introduction

Fenny van Egmond – ISRIC

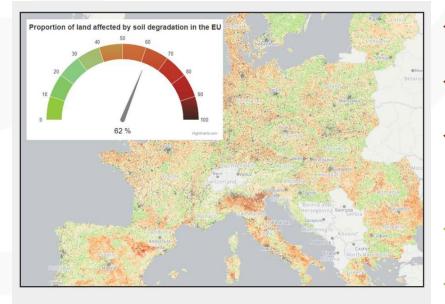
Why provide your data and knowledge?

The Mission Soil Projects are data/knowledge providers.

Each Project has target groups: Land managers, Scientific community, Policy makers, etc.

Soil degradation in the EU

WHY Sharing data and knowledge?


- ✓ Reach your target groups
- ✓ Contribute to the Mission Soil Objectives
- ✓ Have persistent repository for long term impact
- ✓ Improve Soil health in Europe!

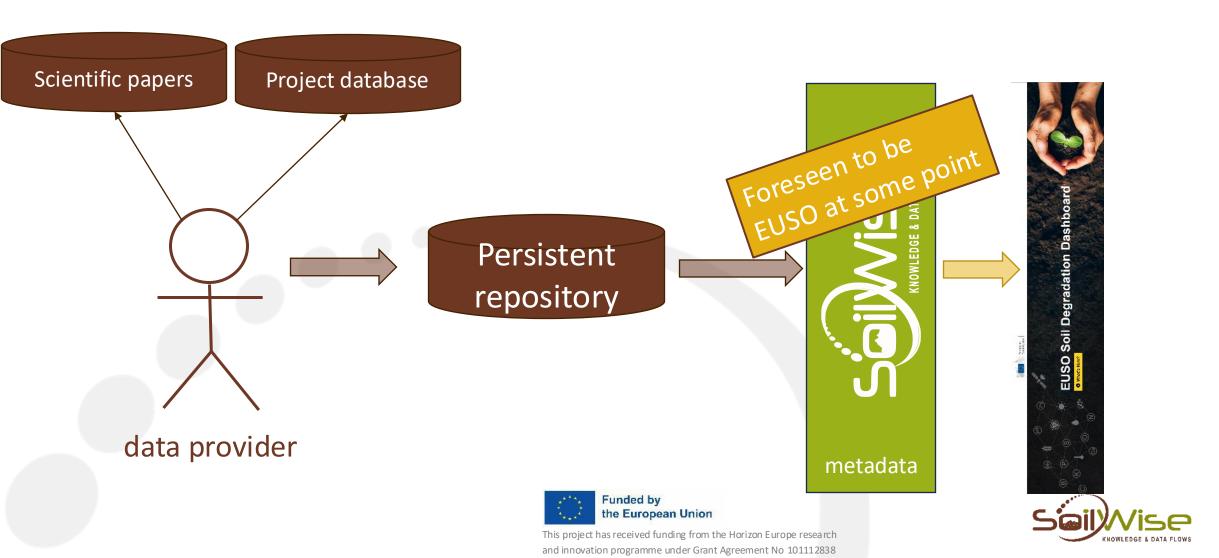
Why use additional data and knowledge?

The Mission Soil Projects are (also) data/knowledge users.

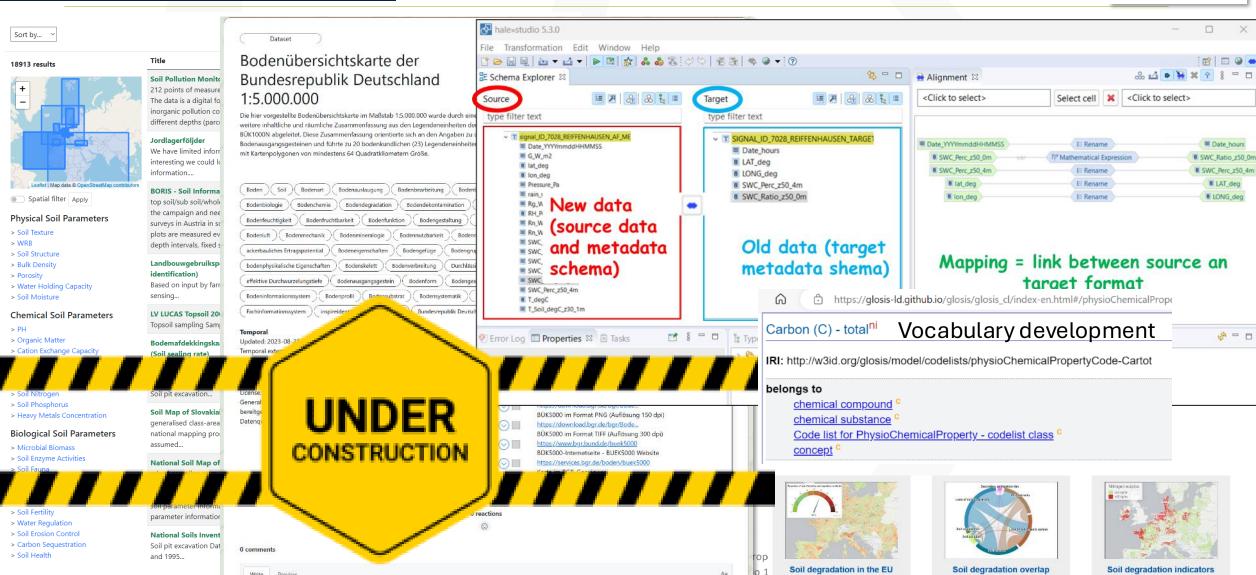
Soil degradation in the EU

Because:

- ✓ Find data and knowledge to supplement your own
- ✓ Answer more research questions in the same time
- Answer questions that a single project or expertise cannot by itself : collaboration in Mission Soil Clusters
- ✓ Contribute to the Mission Soil Objectives
 - Have long term impact with improved results
- Improve Soil health in Europe!


Challenging to find the right data and knowledge

Possible workflow knowledge and data



Weite

Components

https://soilwise-he.containers.wur.nl/cat/

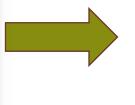
What are the plans?

Project SoilWise intention is:

- to provide a single access point to soil data and knowledge
- to index available data & knowledge
- to establish catalog federation
- to make your (data and knowledge) life easier

SoilWise intention is NOT:

- to copy & store your data
- to control your data
- to steal your data
- to use your data without your permission


Main message

To develop a useful and functional Soil Data and Knowledge Infrastructure, the collaboration efforts (and benefits from the outcomes) need to be mutual for all involved stakeholders (EUSO and Mission Soil Horizon projects' end-users included)

Or both?

Data user

Demonstrations of repository functionality

Celine, xxxx

Narrative MRV

Still to update

Fenny van Egmond (ISRIC)

14/11/2024

An MRV data question

As a researcher in MRV, I need input data and parameters for my model on soil carbon sequestration and for upscaling.

For this, I need as harmonised input information in the right format on soil organic carbon content, other soil data, land use, crop, biomass and climate information at regional level for region X

28 results	Title	Contributor	Туре	Date
+	Herbivore Trampling As An Alternative Pathway For Explaining Differences In Nitrogen Mineralization In Moist Grasslands Studies addressing the role of large herbivores on nitrogen cycling in grasslands have suggested that the direction of effects depends on soil fertility. Via selection for high quality plant species and input of dung and urine, large herbivores have		document	2024/11/13
Leafiet Map data © OpenStreetMap contributors Spatial filter Apply Physical Soil Parameters > Soil Texture Chemical Soil Parameters > PH	Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem Riparian zones contribute with biodiversity and ecosystem functions of fundamental importance for regulating flow and nutrient transport in waterways. However, agricultural land-use and physical changes made to improve crop productivity and yield have		document	2024/11/13
 > Organic Matter > Cation Exchange Capacity > Electrical Conductivity > Nutrient Content > Soil Carbon > Soil Nitrogen > Soil Phosphorus > Heavy Metals Concentration 	Statistiques spatio-temporelles sur les propriétés agronomiques des sols agricoles en France issues de la Base de In France, farmers commission about 250,000 soil- testing analyses per year to assist them managing soil fertility. The number and diversity of origin of the samples make these analyses an interesting and original information source regarding		document	2024/11/13
 Biological Soil Parameters > Microbial Biomass > Soil Enzyme Activities > Soil Fauna 	First German Agricultural Soil Inventory – Core dataset: LABORATORY DATA The Federal Republic of Germany is obliged to report all anthropogenic sources and sinks of	Johann Heinrich von Thünen-Institut, Johann Heinrich von Thünen-Institut, Johann Heinrich von Thünen-Institut	dataset	2020/09/16
Soil RespirationSoil Functions	greenhouse gases on a national scale. Changes in soil organic carbon (SOC) stocks are among these sources and sinks. Furthermore, soil organic			
> Soil Fertility	matter is a key			

43 results	Title	Contributor	Туре	Date
	First German Agricultural Soil Inventory – Core dataset: LABORATORY DATA The Federal Republic of Germany is obliged to report all anthropogenic sources and sinks of greenhouse gases on a national scale. Changes in soil organic carbon (SOC) stocks are among these sources and sinks. Furthermore, soil organic matter is a key	Johann Heinrich von Thünen-Institut, Johann Heinrich von Thünen-Institut, Johann Heinrich von Thünen-Institut	dataset	2020/09/16
Leaflet Map data © OpenStreetMap contributors Spatial filter Apply Physical Soil Parameters	SOTER-based soil parameter estimates (SOTWIS) for Central and Eastern Europe, version 1.0 This harmonized set of soil parameter estimates for Central and Eastern Europe has been derived from a revised version of the 1:2.5M Soil and Terrain (SOTER) Database for Central and Eastern Europe (SOVEOR ver. 1.1) and the ISRIC-WISE soil profile	ISRIC - World Soil Information	dataset	2021/07/14
 > Soil Texture > WRB > Soil Structure > Bulk Density > Porosity > Water Holding Capacity > Soil Moisture 	INSPIRE: Organic Matter Content of Top-Soils in Germany 1:1,000,000 (BUEK1000-HUMUS-OB) The map "Organic Matter Content of Top-Soils in Germany 1:1,000,000 (INSPIRE)" highlights the results of a Germany-wide compilation of typical soil organic matter contents in top-soils differentiated according to groups of soil parent material, four	Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)	dataset	2023/08/22
 Soli Moisture Chemical Soil Parameters > Organic Matter Biological Soil Parameters 	Soil and Terrain Database (SOTER) for China The Soil and Terrain database for China primary data (version 1.0), at scale 1:1 million (SOTER_China), was compiled of enhanced soil information within the framework of the FAO's program of Land Degradation Assessment in Drylands (LADA).	ISRIC - World Soil Information, ISRIC - World Soil Information, ISRIC - World Soil Information	dataset	2021/07/14

An MRV data question

As a researcher in MRV, I need input data and parameters for my model on soil carbon sequestration and for upscaling.

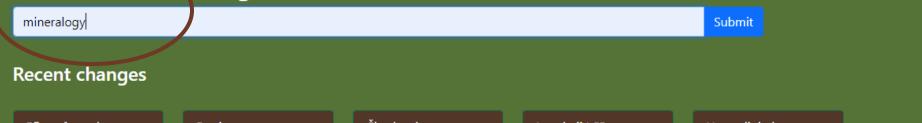
For this, I need as harmonised input information in the right format on soil organic carbon content, other soil data, land use, crop, biomass and climate information at regional level for region X

An MRV data question

As a researcher in MRV, I need to understand and discuss SOC changes at ICOS sites, I have the regular soil data.

For this, I need additional available information on other variables (e.g. mineralogy). If such data is available in one repository, I will avoid having to do again an inventory of available soil databases.

JSON Contact


Soilwise Soil Info hub

SoilWise will provide an integrated and actionable access point to scattered and heterogeneous soil data and knowledge in Europe, making them FAIR (Findable, Accessible, Interoperable and Reusable) and improve trust, willingness, and ability to share and re-use soil data and knowledge. In three project development cycles, cocreation and co-validation by multi-stakeholder groups are the centre of project activities. SoilWise recognises existing workflows and repositories for specific user needs and aims to work with them to enhance their discoverability, approachability and interconnection. An open, modular, scalable and extensible knowledge and data repository building on existing and new technologies will be provided while respecting data ownership, access policies and privacy. AI- and ML- techniques will be employed to interlink scattered data and knowledge, automatise the processes, infer new knowledge and increase FAIRness. SoilWise applies infrastructure thinking instead of project thinking to design a repository for at least a decade to support EUSO evolvement accordingly.

This is an early prototype of the repository, deployed with the goal to generate feedback to improve the software and content in upcoming iterations. Please provide your feedback via <u>Github</u>

Search in the catalogue

Home

<u>Home / List</u>

Vise WLEDGE & DATA FLOWS

Sort by 🗸		mineralogy	Search
43 results	Title	Contributor	Type Date
	Investigation Of Runoff Generation In A Pristine, Poorly Gauged Catchment In The Chilean Andes I: A Multi-Method AbstractCatchment scale hydrological process studies in southern Chile are of special interest as little research at this scale has been carried out in this region. In particular, the young volcanic ash soils, which are typical for this area, are not		document 2024/11/1
Leaflet Map data © OpenStreetMap contributor Spatial filter Apply Physical Soil Parameters > Soil Texture > WRB	Regional Variation In Soil Carbon And Δ13c In Forests And Pastures Of Northeastern Costa Rica Recent studies suggest that the direction and magnitude of changes in soil organic carbon (soil C) pools following forest-to-pasture conversion in the tropics are dependent upon initial soil conditions and local factors (e.g. pre- conversion soil C		document 2024/11/1
 > Soil Structure > Bulk Density > Porosity > Water Holding Capacity > Soil Moisture Chemical Soil Parameters	Silicate Weathering In Temperate Forest Soils Insights From A Field Experiment Few studies of silicate mineral weathering have been conducted in carbonate-bearing temperate forest soils. With climate and vegetation held constant, we compared soil mineralogy and major element chemistry of soil waters from a carbonate-free		document 2024/11/1
> PH > Organic Matter > Cation Exchange Capacity	Stabilization Of Recent Soil Carbon In The Humid Tropics Following Land Use Changes: Evidence From		document 7024/11/1

> Microbial Biomass	
---------------------	--

- > Soil Enzyme Activities
- > Soil Fauna
- > Soil Respiration

Soil Functions

- > Soil Fertility
- > Water Regulation
- > Soil Erosion Control
- > Carbon Sequestration
- > Soil Health
- > Supporting Plant Growth
- > Contaminant Filtration

Soil Degradation Indicators

- > Soil Erosion
- > Soil Compaction
- > Soil Salinization
- > Soil Acidification
- > Soil Contamination

Environmental Soil Functions

- > Habitat For Organisms
- > Climate Regulation
- > Water Filtration

Long-Term Field Experiments

- > Experimental Treatments
- > Temporal Data
- > Environmental Covariates
- > Soil Productivity

field survey. The spectra were taken at 0.7 to 1.4 m s-1 at 0.3 m above soil surface with an RSI-700..... On-the-go gamma spectra for the site University of Bonn, Institute of Crop Science and dataset 2023/12/01 "Uckermark-1" from the publication Pätzold Resource Conservation (INRES) - Soil Science and Soil Ecology Bonn (Germany), University of Bonn, Institute of et al. 2020, Soil Systems 4, 31 p Science and Resource Conservation (INRUS) - Soil The file contains 11,406 datasets. They comprise Cr gamma-ray-data (total counts, K-40, U, 228, and Science and Soil Ecology, Bonn (Germany), Leoniz Th-232, all in Bq), along with co-ordinates from a Centre for Agricultural Landscape Research (TALF) field survey. The spectra were taken at 0.7 to 1.4 m s-1 at 0.3 m above soil surface with an RSI-700..... dataset 2023/12/01 On-the-go gamma spectra for the site University of Bonn, Institute of Crop Science and "Rheinbach-2" from the publication Pätzold Resource Conservation (INRES) - Soil Science and Soil et al. 2020, Soil Systems 4, 31 Ecology, Bonn (Germany), University of Bonn, Institute of The file contains 680 datasets. They comprise Crop Science and Resource Conservation (NRES) - Soil gamma-ray data (total counts, K-40, U-238, and Science and Soil Ecology, Bonn (Germany) Leibniz Th-232, all in Bq), along with co-ordinates from a Centre for Agricultural Landscape Research (ZALF) field survey. The spectra were taken at 0.7 to 1.4 m s-1 at 0.3 m above soil surface with an RSI-700..... On-the-go gamma spectra for the site University of Bonn, Institute of Crop Science and dataset 2023/09/2 "Uckermark 2" from the publication Pätzold Resource Conservation (INRES) - Soil Science and Soil Ecology, Bonn (Germany), University of Born, Institute of et al. 2020, Soil Systems 4, 31 The file contains 13364 datasets. They comprise Crop Science and Resource Conservation (ILIRES) - Soil gamma-ray data (total counts, K-40, U-238, and Science and Soil Ecology, Bonn (Germany), Leibniz Th-232, all in Bq), along with co-ordinates from a Centre for Agricultural Landscape Research (ZALF) field survey. The spectra were taken at 0.7 to 1.4 m s-1 at 0.3 m above soil surface with an RSI-700..... University of Bonn, Institute of Crop Science and On-the-go gamma spectra for the site dataset 2023/12/01 Resource Conservation (INRES) - Soil Science and Soil "Düren" from the publication Pätzold et al. 2020, Soil Systems 4, 31 Ecology, Bonn (Germany), University of Bonn, Institute of The file contains 3,592 datasets. They comprise Crop Science and Resource Conservation (INRES) - Soil

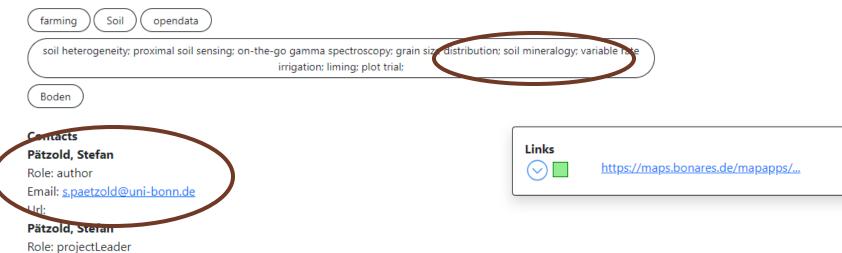
Science and Soil Ecology, Bonn (Germany), Leibniz

Centre for Agricultural Landscape Research (ZALF)

gamma-ray data (total counts, K-40, U-238, and

Th-232, all in Bg), along with co-ordinates from a

NOWLEDGE & DATA FLOWS


Dataset

On-the-go gamma spectra for the site "Uckermark-1" from the publication Pätzold et al. 2020, Soil Systems 4, 31

The file contains 11,406 datasets. They comprise gamma-ray data (total counts, K-40, U-238, and Th-232, all in Bq), along with co-ordinates from a field survey. The spectra were taken at 0.7 to 1.4 m s-1 at 0.3 m above soil surface with an RSI-700 instrument (two 4.2 L NaI crystals). Further details in the open access publication Pätzold et al. 2020 (https://doi.org/10.3390/soilsystems4020031)

KNOWLEDGE & DATA FL

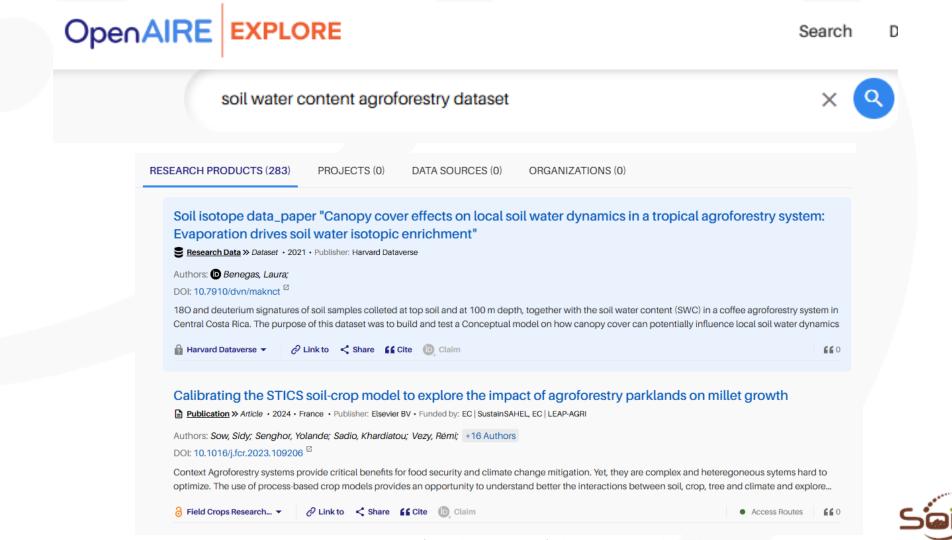
5 1 × 10 1 ×

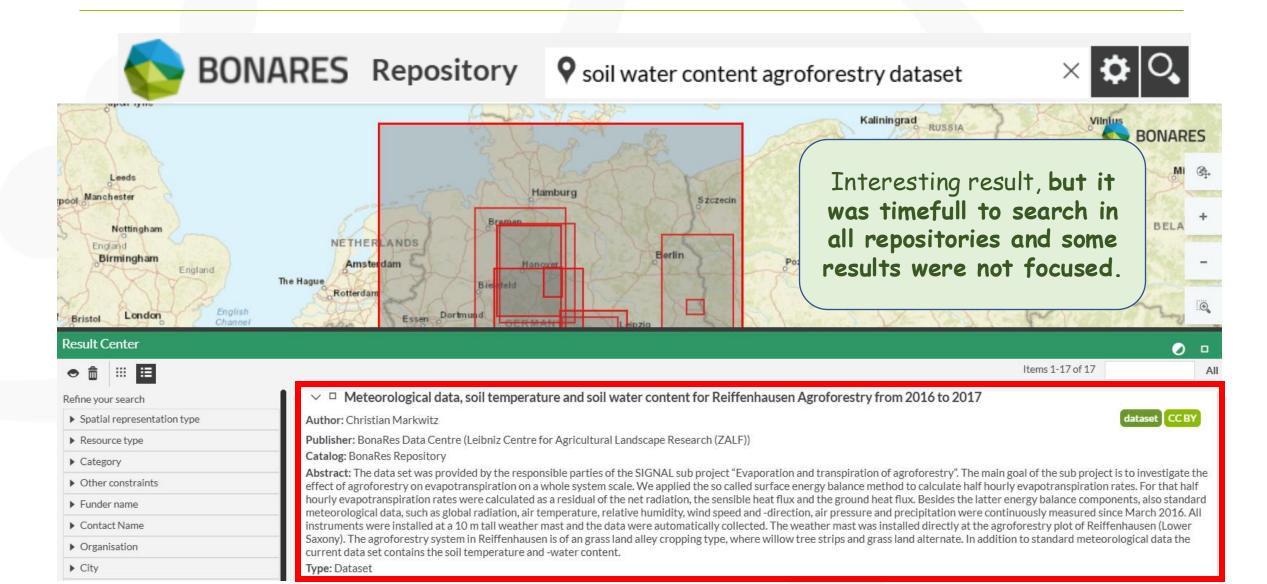
Narrative : an agroforestry story

An agroforestry story

As a researcher in ecophysiology at INRAE, I need to simulate the water and light use efficiencies in agroforestry plots.

For this modeling, I need as input information the soil water content in %





and innovation programme under Grant Agreement No 101112838

https://soilwise-he.containers.wur.nl/

Welcome to the Soilwise HE data and knowledge hub

You have arrived at a prototype of the Soilwise HE Data and Knowledge hub to safeguard soils. Together, we're fostering soil wisdom, advancing agriculture, and building a legacy of greener, healthier soils.

Read more about the project behind this prototype at our website at Soilwise-HE.eu

Search through the catalogue

Funded by

and innovation programme under Grant Agreement No 101112838

soil water content agroforestry

This project has received funding from the Horizon Europe research

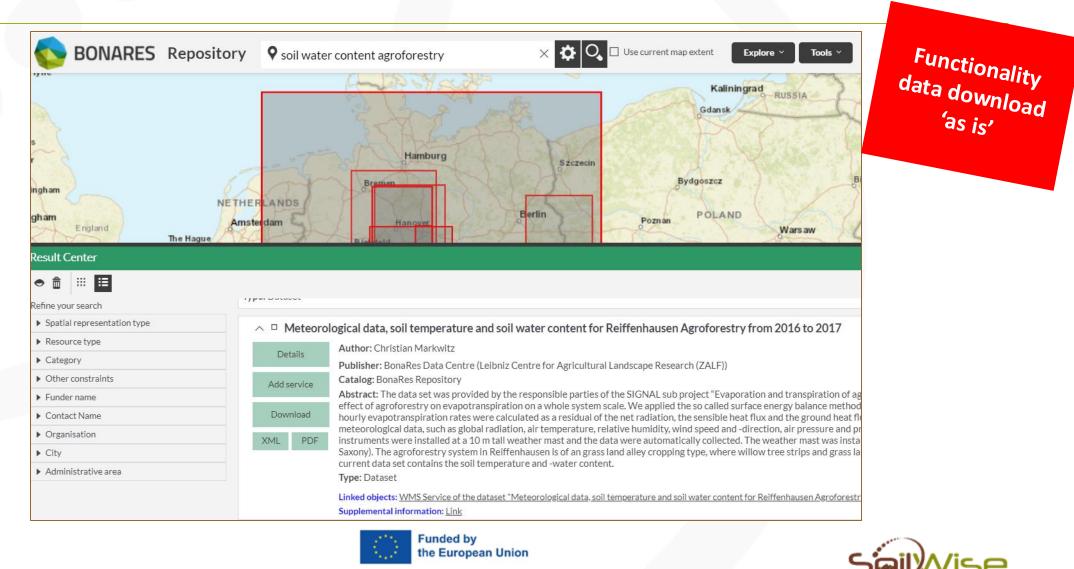
Sort by 🗸		soil water content a	agroforestry	Search Date
results.	Title	Organisation	Туре	Date
	Meteorological data, soil temperature and soil water content for Reiffenhausen Agroforestry from 2016 to 2017	University of Göttingen, Bioclimatology, Leibniz Centre for Agricultural Landscap Research (ZALF)		2024/11/11
	<u>WMS Service of the dataset</u> <u>"Meteorological data, soil temperature</u> <u>and soil water content for Mariensee</u> <u>Agroforestry from 2016 to 2017</u> "	University of Göttingen, Bioclimatology, University of Göttingen, Bioclimatology, Leibniz Centre for Agricultural Landscap Research (ZALF)		2021/03/16
Leaflet Map data © OpenStreetMap contributors	<u>Agroforestry delivers a win-win</u> solution for ecosystem services in sub- Saharan Africa. A meta-analysis		journalpaper	2025/02/26
ets	<u>WMS of the dataset 'Soil water</u> <u>content at agroforestry site in Forst,</u> <u>2019 and 2020'</u>	Brandenburgische Technische Universitä Cottbus-Senftenberg, Brandenburgische Technische Universität Cottbus-Senftenk Leibniz Centre for Agricultural Landscap Research (ZALF)	e berg,	2024/07/11
	Soil Water Regime Under Rotational Fallow And Alternating Hedgerows On An Ultisol In Southern Cameroon		journalpaper	2025/03/04
	Water Harvesting In A 'Runoff-		journalpaper	2025/03/04

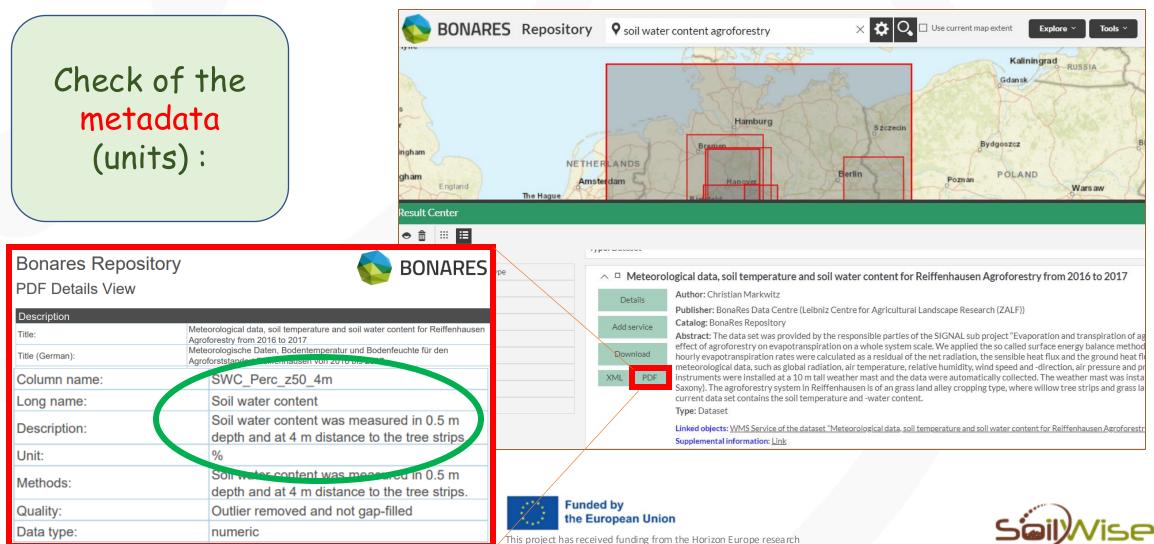
Туре								
Journalpaper Faceted Dataset Service filters		24 13 6			soil water content agrofo	restry	Search	Functionality Catalogue
Document		0	Title	Organisation		Туре	Date	Catalogue
Soil_chemical_prope <u>Nitrogen</u> <u>Carbon</u>	erties	2	Meteorological data, soil temperature and soil water content for Reiffenhausen Agroforestry from 2016 to 2017		ngen, Bioclimatology, -, Agricultural Landscape	dataset	2024/11/11	
Soil_functions		0	<u>WMS Service of the dataset</u> <u>"Meteorological data, soil temperature</u> <u>and soil water content for Mariensee</u> <u>Agroforestry from 2016 to 2017</u> "	University of Götti	ngen, Bioclimatology, ngen, Bioclimatology, Agricultural Landscape	service	2021/03/16	
<u>Ecosystems</u> <u>Mineralisation</u>		0	Agroforestry delivers a win-win solution for ecosystem services in sub- Saharan Africa. A meta-analysis			journalpaper	2025/02/26	
Soil_properties Soil_fertility Soil_threats		0	<u>WMS of the dataset 'Soil water</u> <u>content at agroforestry site in Forst,</u> <u>2019 and 2020'</u>	Cottbus-Senftenbe Technische Univer	Technische Universität erg, Brandenburgische sität Cottbus-Senftenberg, Agricultural Landscape	service	2024/07/11	
Soil erosion		0	Soil Water Regime Under Rotational Fallow And Alternating Hedgerows On An Ultisol In Southern Cameroon			journalpaper	2025/03/01	
Productivity			Water Harvesting In A 'Runoff-			journalpaper	2025/03/01	

Meteorological data, soil temperature and soil water content for Reiffenhausen Agroforestry from 2016 to 2017

The data set was provided by the responsible parties of the SIGNAL sub project "Evaporation and transpiration of agroforestry". The main goal of the sub project is to investigate the effect of agroforestry on evapotranspiration on a whole system scale. We applied the so called surface energy balance method to calculate half hourly evapotranspiration rates. For that half hourly evapotranspiration rates were calculated as a residual of the net radiation, the sensible heat flux and the ground heat flux. Besides the latter energy balance components, also standard meteorological data, such as global radiation, air temperature, relative humidity, wind speed and - direction, air pressure and precipitation were continuously measured since March 2016. All instruments were installed at a 10 m tall weather mast and the data were automatically collected. The weather mast was installed directly at the agroforestry plot of Reiffenhausen (Lower Saxony). The agroforestry system in Reiffenhausen is of an grass land alley cropping type, where willow tree strips and grass land alternate. In addition to standard meteorological data the current data set contains the soil temperature and -water content.

(climatologyMeteorologyAtmosphere meteorological observations agroforestry microclimate
(soil measurements (soil analysis) global radiation (net radiation) (wind speed) (relative humidity)
(wind direction air temperature ground heat flux soil water content soil temperature air pressure
(precipitation Atmosphärischer Vorgang Luftbewegung Atmosphärische Bedingungen Boden


Contacts


Dataset

Christian Markwitz Role: author Position: PhD Student Phone: +49 551 39 20597 Email: <u>christian.markwitz@forst.uni-goettingen.de</u> Deliverypoint: Büsgenweg 2 City: Göttingen

Links		
html	https://maps.bonares.de/mapapps/	1.05 KB

and innovation programme under Grant Agreement No 101112838

Download of data :

Soil water content in %, at different depth and distances from the tree lines

Sonares	Repository	• soil water content agroforestry	X 🗘 🔍 🗆 Use current map extent	Functional
ngham gham England		Hamburg Bremen RLANDS erdam	Szczecin Bydgoszcz Berlin POLA	
Result Center				
		∧ □ Meteorological data, soil temperature and	l soil water content for Reiffenhausen Agrofore	estry from 2016 to 2017
 Resource type Category Other constraints Funder name 		Details Author: Christian Markwitz Publisher: BonaRes Data Centre (Leib Add service Catalog: BonaRes Repository Abstract: The data set was provided b	bniz Centre for Agricultural Landscape Research (ZALF by the responsible parties of the SIGNAL sub project "Ev)) vaporation and transpiration of ag
Contact Name Organisation		Download hourly evapotranspiration rates were meteorological data, such as global rates and the second seco	piration on a whole system scale. We applied the so calle e calculated as a residual of the net radiation, the sensibl adiation, air temperature, relative humidity, wind speed tall weather mast and the data were automatically colle and the mast and the data were automatically colle and the mast and the start of the	e heat flux and the ground heat flu and -direction, air pressure and pr cted. The weather mast was insta

iffenhausen Agroforest

SWC_Perc_z30_1m	SWC_Perc_z30_4m	SWC_Perc_z50_0m	SWC_Perc_z50_4m	SWC_Perc_z100_0m	SWC_Perc_z100_1m	
35.7029	36.628325	48.598015	39.50269	46.54864	40.010545	teorological data, soil temperature and soil water content for Reifi
35.72367	36.668275	48.61131	39.51472	46.551475	40.012855	
35.68747	36.54648	48.65459	39.535865	46.55359	40.00477	
35.716255	36.594485	48.614395	39.5268	46.534	40.02503	
35.697445	36.603985	48.59386	39.50731	46.5442	40.00546	
35.69685	36.574905	48.6032	39.526105	46.54335	40.01454	c Giu
35.715615	36.622265	48.592875	39.516305	46.522835	40.024275	
33.713013	30.022203	40.002070	33.310303	40.322033	40.024273	

Now that I have my **new data** :

	OBJE lat_de	g lon_deg	Date_YYYYmr	T_degC	RH_Perc	Rn_W_m2	G_W_m2 rair	n_n WS_m_s	T_Soil_degC_	SWC_Perc_z30_1m	SWC_Perc_z30_4m	SWC_Perc_z50_0m	SWC_Perc_z50_4m	SWC_Perc_z100_0m	SWC_Perc_z100_1m
	1 51.398	9 9.987122	2016-03-01T0	-1.33732	75.009722	-56.84727	-7.592705	0 1.919708	2.7958995	35.7029	36.628325	48.598015	39.50269	46.54864	40.010545
	2 51.398	9 9.987122	2016-03-01T0	-1.81382	78.979888	-44.13033	-7.585438	0 1.431261	2.7927845	35.72367	36.668275	48.61131	39.51472	46.551475	40.012855
L	3 51.398	9 9.987122	2016-03-01T0	-1.71470	79.408944	-23.63116	-7.541722	0 1.256810	2.786562	35.68747	36.54648	48.65459	39.535865	46.55359	40.00477

I need to compare it to an old data having a different format :

LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_4m	SWC_Ratio_z50_0m
51.398939	9.987122	2015-03-01T0	47.61131	39.124
51.398940	9.987123	2015-03-01T0	46.293015	38.9658
51.398941	9.987124	2015-03-01T0	46.53759	38.23725
51.398942	9.987125	2015-03-01T0	47.512395	39.1724

So I need to transform my new data format :

0	DBJE lat_c	deg lon_deg	g Date_YYYYm	r T_degC	RH_Perc	Rn_W_m2	G_W_m2 rain	_n WS_m_s	T_Soil_degC_	SWC_Perc_z30_1m	SWC_Perc_z30_4	4m SWC_Perc_z50_0m	SWC_Perc_z50_4m	SWC_Perc_z100_0m	SWC_Perc_z100_1m
L	1 51.3	989 9.98712	222016-03-01T	-1.33732	75.009722	-56.84727	-7.592705	0 1.919708	2.7958995	35.7029	36.628325	48.598015	39.50269	46.54864	40.010545
L	2 51.3	989 9.98712	222016-03-01T	-1.81382	78.979888	-44.13033	-7.585438	0 1.431261	2.7927845	35.72367	36.668275	48.61131	39.51472	46.551475	40.012855
L	3 51.3	989 9.98712	222016-03-01T	-1.71470	79.408944	-23.63116	-7.541722	0 1.256810	2.786562	35.68747	36.54648	48.65459	39.535865	46.55359	40.00477

in the old data format :

LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_4m	SWC_Ratio_z50_0m
51.398939	9.987122	2015-03-01T0	47.61131	39.124
51.398940	9.987123	2015-03-01T0	46.293015	38.9658
51.398941	9.987124	2015-03-01T0	46.53759	38.23725
51.398942	9.987125	2015-03-01T0	47.512395	39.1724

To obtain this transformed data :

LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_4m	SWC_Ratio_z50_0m
51.398939	9.987122	2016-03-01T0	48.61131	39.44728
51.398940	9.987123	2016-03-01T0	48.598015	39.47648
51.398941	9.987124	2016-03-01T0	48.65459	39.43775
51.398942	9.987125	2016-03-01T0	48.614395	39.43758

So I need to transform my new data format :

OBJE lat_deg lon_deg Date_YYYYmr T_degC RH_Perc	Rn_W_m2 G_W_m2 rain_m	n WS_m_s T_Soil_degC_:	SWC_Perc_z30_1m	SWC_Perc_z30_4m	SWC_Perc_z50_0m	SWC_Perc_z50_4m	SWC_Perc_z100_0m	SWC_Perc_z100_1m
1 51.3989 9.98712 2016-03-01T0 -1.33732 75.0097	22 - 56.84727 - 7.592705 0	1.919708 2.7958995	35.7029	36.628325	48.598015	39.50269	46.54864	40.010545
2 51.3989 9.98712 2016-03-01T0 -1.81382 78.9798	88 -44.13033: -7.585438 0	1.4312612.7927845	35.72367	36.668275	48.61131	39.51472	46.551475	40.012855
3 51.3989 9.98712 2016-03-01T0 -1.71470 79.4089	44 -23.63116(-7.541722 0	1.25681(2.786562	35.68747	36.54648	48.65459	39.535865	46.55359	40.00477

in the old data format :

LAT_deg	LONG_deg	Date_hours	WC_Perc_z50_4m	SWC_Ratio_z50_0m
51.398939	9.987122	2015- <mark>03-01</mark> T	0 47.61131	39.124
51.398940	9.987123	2015- <mark>03-01T</mark>	0 46.293015	38.9658
51.398941	9.987124	2015- <mark>03-01T</mark>	0 46.53759	38.23725
51.398942	9.987125	2015- <mark>03-01T</mark>	0 47.512395	39.1724

« Target metadata schema »

To obtain this transformed data :

LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_4m	SWC_Ratio_z50_0m
51.398939	9.987122	2016-03-01T	0 48.61131	39.44728
51.398940	9.987123	2016-03-01T	48.598015	39.47648
51.398941	9.987124	2016-03-01T	48.65459	39.43775
51.398942	9.987125	2016-03-01T	0 48.614395	39.43758

So I need to transform my new data format :

OBJE la	t_deg	lon_deg	Date_YYYYmr	T_degC	RH_Perc	Rn_W_m	2_G_W_m2	rain_n WS	6_m_s T_	Soil_degC_	SWC_Perc_z30_1m	SWC_Perc_z30_4m	SWC_Perc_z50_0m	SWC_Perc_z50_4m	SWC_Perc_z100_0m	SWC_Perc_z10	00_1m
1 51	1.398	9.9871	2016-03-01T0	·1.33732	75.009722	-56.8472	7 -7.592705	0 1.9	19708 2.7	7958995	35.7029	36.628325	48.598015	39.50269	46.54864	40.010545	
2 51	1.398	9.9871	2016-03-01T0	1.81382	78.979888	-44.1303	3:-7.585438	0 1.4	312612.7	7927845	35.72367	36.668275	48.61131	39.51472	46.551475	40.012855	
3 51	1.398	9.9871	2016-03-01T0	1.71470	79.408944	-23.63110	5(-7.541722	0 1.2	5681(2.7	786562	35.68747	36.54648	48.65459	39.535865	46.55359	40.00477	

« Source data (and metadata schema) »

in the old data format :

ormat: Unit conversion $\% \rightarrow$ ratio

LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_4m	SWC_Ratio_z50)_0m
51.398939	9.987122	2015-03-01T0	47.61131	39.124	
51.398940	9.987123	2015-03-01T0	46.293015	38.9658	
51.398941	9.987124	2015-03-01T0	46.53759	38.23725	
51.398942	9.987125	2015-03-01T0	47.512395	39.1724	

To obtain this transformed data :

	LAT_deg	LONG_deg	Date_hours	SWC_Perc_z50_	_4m	SWC_Ratio	z50_0m
4	51.398939	9.987122	2016-03-017	48.61131	¥	:	
	51.398940	9.987123	2016-03-01T	48.598015		Ratio	
	51.398941	9.987124	2016-03-01T	48.65459		Ratio	
	51.398942	9.987125	2016-03-017	48.614395		:	

Soil water content data for agroforestry

I usually program a script for this operation, but I can use Hale Studio, there will be less coding.

https://wetransform.to/halestudio

This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

How can you comment?

Meteorological data, soil temperature and soil water content for Reiffenhausen Agroforestry from 2016 to 2017

The data set was provided by the responsible parties of the SIGNAL sub project "Evaporation and transpiration of agroforestry". The main goal of the sub project is to investigate the effect of agroforestry on evapotranspiration on a whole system scale. We applied the so called surface energy balance method to calculate half hourly evapotranspiration rates. For that half hourly evapotranspiration rates were calculated as a residual of the net radiation, the sensible heat flux and the ground heat flux. Besides the latter energy balance components, also standard meteorological data, such as global radiation, air temperature, relative humidity, wind speed and direction, air pressure and precipitation were continuously measured since March 2016. All instruments were installed at a 10 m tall weather mast and the data were automatically collected. The weather mast was installed directly at the agroforestry plot of Reiffenhausen (Lower Saxony). The agroforestry system in Reiffenhausen is of an grass land alley cropping type, where willow tree strips and grass land alternate. In addition to standard

grass land alley cropping type, where willow tree still.		
meteorological data the current data set contains the	0 comments	
climatologyMeteorologyAtmosphere meteorologice	Write Preview	Aa
soil measurements soil analysis global radiatic	Sign in to comment	
wind direction air temperature ground heat flu		
precipitation Atmosphärischer Vorgang Luftbe		
Contacts		Q Sign in with GitHub
Christian Markwitz	Updated: 2024-11-11	
Role: author		
Position: PhD Student		
Phone: +49 551 39 20597		
Email: christian.markwitz@forst.uni-goettingen.de		S@il

Position: PhD Student Phone: +49 551 39 20597 Email: christian.markwitz@forst Deliverypoint: Büsgenweg 2 City: Göttingen

Dataset

Interactive discussion on enhancing the prototype's usefulness for users, and metadata

Fenny van Egmond ISRIC, Celine Blitz-Frayret CIRAD, Radu Giurgiu EV-ILVO, Tomas Reznik MU, Paul van Genuchten ISRIC, Panos Ilias EV-ILVO

User stories

Please go to the **flip charts** on the wall

- **Discuss** with each other (e.g. per topic group?)
- Write down 2 typical data or information questions from your project or everyday work, each
- In this **format**:

As an <actor>,

I want to have/be able to <function>,

so that I can/don't have to

business reason

>.

his project has received funding from he Horizon Europe research and movation programme under Grant greement No 101112838

How to resolve the user stories currently?

 For the user stories you just wrote down, add another post-it describing how you would approach this question now

• And add a V or an X, if that is **satisfactory** or not

is project has received funding from e Horizon Europe research and novation programme under Grant greement No 101112838

An ideal world

- For the user stories you just wrote down, add another post-it describing how, in an **ideal world**, you would like to have your information question solved
 - How do you want to **interact** with a system, what do you supply?
 - And what (and in what level of detail, or characteristics) do you expect back from the system?

s project has received funding from Horizon Europe research and ovation programme under Grant reement No 101112838

Quick wins

Between an ideal world and real life (the current state of the art) there may be a **gap**.

- What are the quick wins you think a **project** like SoilWise (or your own data team/WP) should **focus** on to make your life easier?
- What can you do **yourself** to make your and others' data life easier?

project has received funding from Horizon Europe research and vation programme under Grant rement No 101112838

Report back

• Per flip-chart group

Agreement No 101112838

This project has received funding from the Horizon Europe research and innovation programme under Grant

Soil Companion

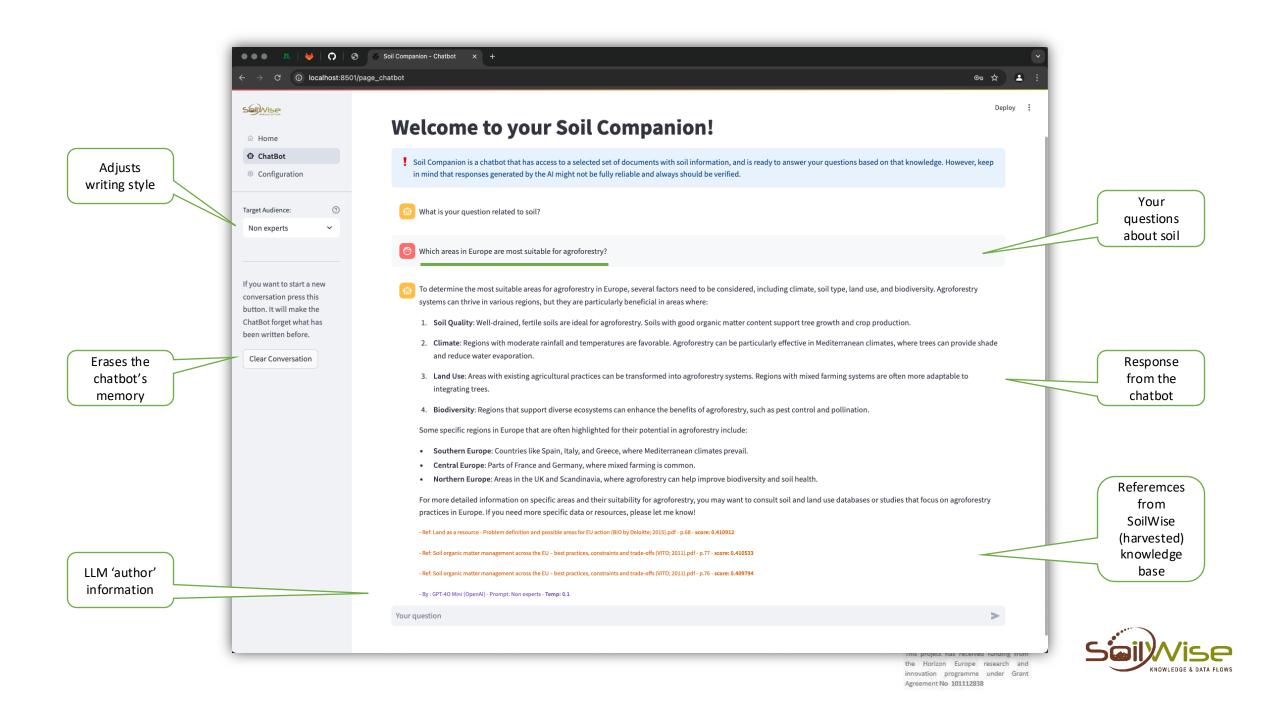
Rob Knapen Wageningen Environmental Research

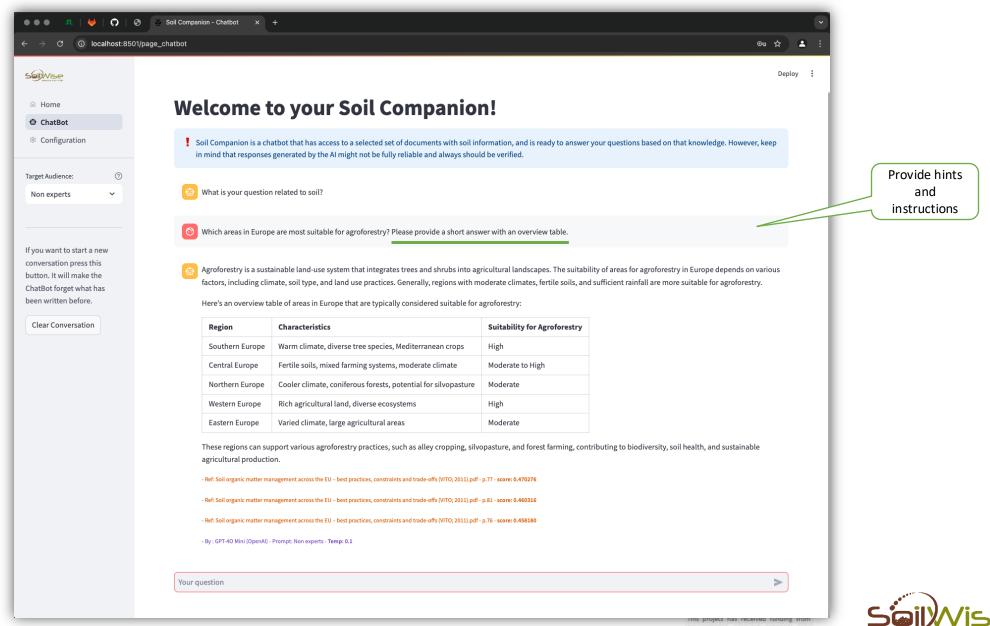
Using a LLM to answer questions in natural language

"LLMs are the cherry on the cake,

the cake being a curated database of knowledge."

- Large Language Models (LLM) or ChatGPT type models offer great opportunities for generating answers to (natural language) user queries
- There are also some disadvantages
 - Training cut off date
 - Broadly oriented and less focused on soil health
 - Tendency to "hallucinate" and be generic

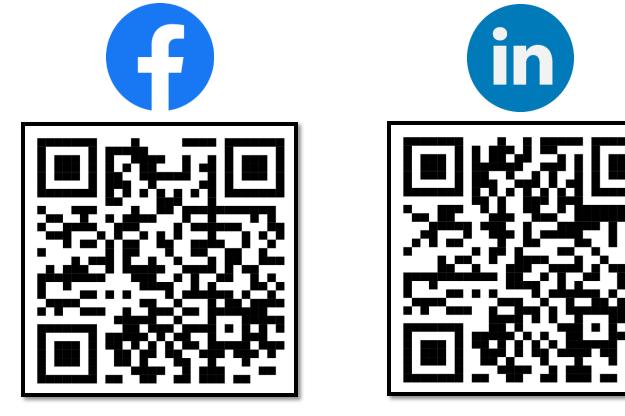



is project has received funding from a Horizon Europe research and novation programme under Grant reement No 101112838

Current SoilWise Chatbot prototype

docs 🗸 🗋 all Common criteria for risk area identification according to soil threats (European Soil Bureau; 2006).pdf D2.1_ADS_Governance-and-Business-Models.pdf D2.2_ADS_Legislation-and-ethical-principles.pdf D3.1_ADS_Technical-requirements.pdf D3.2_ADS_Reference-Architecture-.pdf Similarity Search dataspecification_so.pdf Derivation methods of soil screening values in Europe (European Commission; 2007).pdf EN - Sealing Guidelines.pdf ENV_Vol-I_Final2_web.pdf 🛎 Evaluation of expenditure and jobs for addressing soil contamination in Member States (Ernst & Young; 2013).pdf 🖹 Evaluation of soil protection aspects in certain programmes of measures adopted by Member States (ahu AG Wasser-Boden-Ge GS SOIL_D2.3_Theme catalogue_final.pdf GS SOIL_D2.4 Final_content_IPR_Assessment.pdf GS SOIL_D2.5 Content Framework BPG.pdf GS SOIL_D3.1_Dataset_metadata_profile.pdf GS SOIL_D3.2_Services_metadata_profile.pdf SS SOIL_D3.4_Metadata_BPG.pdf Vector Database / Soil Companion GS SOIL_D4.1_Theme_specific_test_cases.pdf Search Engine GS SOIL_D4.2_Generic_application_schema.pdf GS SOIL_D4.3_Annex_Testcase_AT.pdf GS SOIL_D4.3_Annex_Testcase_BG.pdf GS SOIL_D4.3_Annex_Testcase_Celtic.pdf GS SOIL_D4.3_Annex_Testcase_Fl.pdf GS SOIL_D4.3_Annex_Testcase_GR.pdf GS SOIL_D4.3_Annex_Testcase_HU.pdf GS SOIL_D4.3_Annex_Testcase_Sl.pdf GS SOIL_D4.3_Annex_Testcase_SK.pdf SS SOIL_D4.3_Data_Harmonization_BPG.pdf 🛸 Inventory and Assessment of Soil Protection Policy Instruments in EU Member States (Ecologic Institute, 2017).pdf isric_report_2014_01.pdf 🛸 Land as a resource - Problem definition and possible areas for EU action (BIO by Deloitte; 2015).pdf landmark-data-warehouse.pdf User OWL 2 Web Ontology Language Document Overview (Second Edition).pdf RDF Schema 1.1.pdf 🕏 Report on best practices for limiting soil sealing and mitigating its effects (Environment Agency Austria; 2011).pdf 🕏 Review of existing information on the interrelations between soil and climate change (Alterra Wageningen UR; 2008).pdf Scoping study on the International Year of Soils 2015 (Public Relations Communication Strategy SPRL; 2014).pdf SDG Land BrochureSept2020_EN_v3.pdf Soil and water in a changing environment (BIO Intelligence Service; 2014).pdf soil biodiversity - functions, threats and tools for policy makers (BIO Intelligence Service, 2010).pdf Soil organic matter management across the EU – best practices, constraints and trade-offs (VITO; 2011).pdf Funded by the European Union Soil Protection - The story behind the Strategy (European Commission; 2006).pdf Soil_Report TH-AL-22-018-EN-N.pdf This project has received funding from SPARQL 1.1 Query Language.pdf the Horizon Europe research and Study_supporting_potential_land_targets_under_the_2014_land_communication_(BIO_by_Deloitte;_2014).html innovation programme under Grant Agreement No 101112838 WENR-rapport 3032_Totaal_LR.pdf

the Horizon Europe research and innovation programme under Grant Agreement No 101112838


To close the meeting

<u>www.menti.com</u> code: 1939 3017


SoilWise social media accounts Website: soilwise-he.eu

SoilWise Project

Search:

SoilWise Project

@SoilWiseproject

Thank you so much for attending!

Time for the Closing Session

Working together, facilitating dedicated national systems

Agenda - Cluster on Data and Knowledge Management (session 2) 14.00-16.30

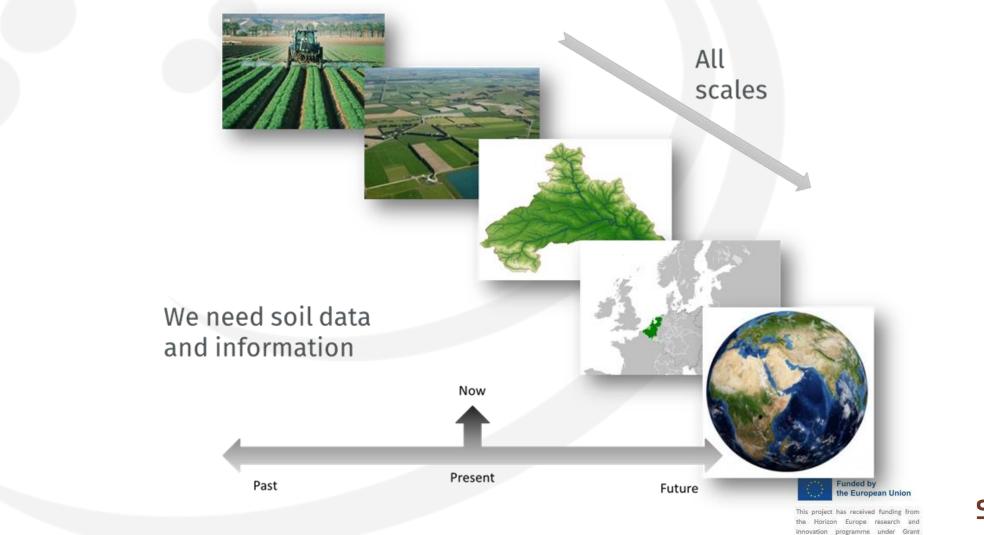
Cluster on Data and Knowledge Management (session 2): The SoilWise Prototype – A showcase for different users

- Ice-breaker exercise: who is in the room? Fenny van Egmond (SoilWise)
- Introduction to finding (FAIR) data: the SoilWise repository Fenny van Egmond and Celine Blitz-Frayret (SoilWise)
 - o MRV data question
 - Use case 'An agroforestry story'
 - Future outlook Soil Companion
- Interactive discussion on enhancing the prototype's usefulness for users and metadata Fenny van Egmond, Celine Blitz-Frayret, Radu Giurgiu, Tomáš Řezník, Paul van Genuchten, Panos Ilias (SoilWise)

This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

Icebreaker: Who is in the room?

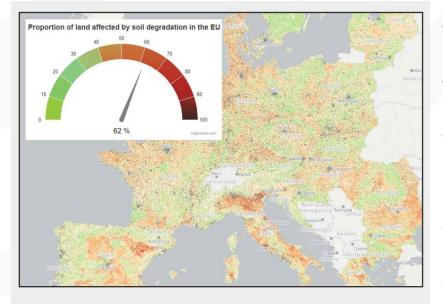
www.menti.com code: 1939 3017



Introduction to finding FAIR data the SoilWise repository

Fenny van Egmond ISRIC, Celine Blitz-Frayret CIRAD, Radu Giurgiu EV-ILVO, Tomáš Řezník MU, Paul van Genuchten ISRIC and the entire SoilWise team

Data needs



Agreement No 101112838

Why use additional data and knowledge?

The Mission Soil Projects are (also) data/knowledge users.

Soil degradation in the EU

Because:

- ✓ Find data and knowledge to supplement your own
- ✓ Answer more research questions in the same time
- Answer questions that a single project or expertise cannot by itself : collaboration in Mission Soil Clusters
- ✓ Contribute to the Mission Soil Objectives
 - Have long term impact with improved results
- Improve Soil health in Europe!

This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

Optimal usage scenario

- Find the data
- Access the data at a web address or via a contact point
- Get the data in a harmonized format, structure, methods (interoperability), either automatically or else based on proper metadata
- Reuse the data

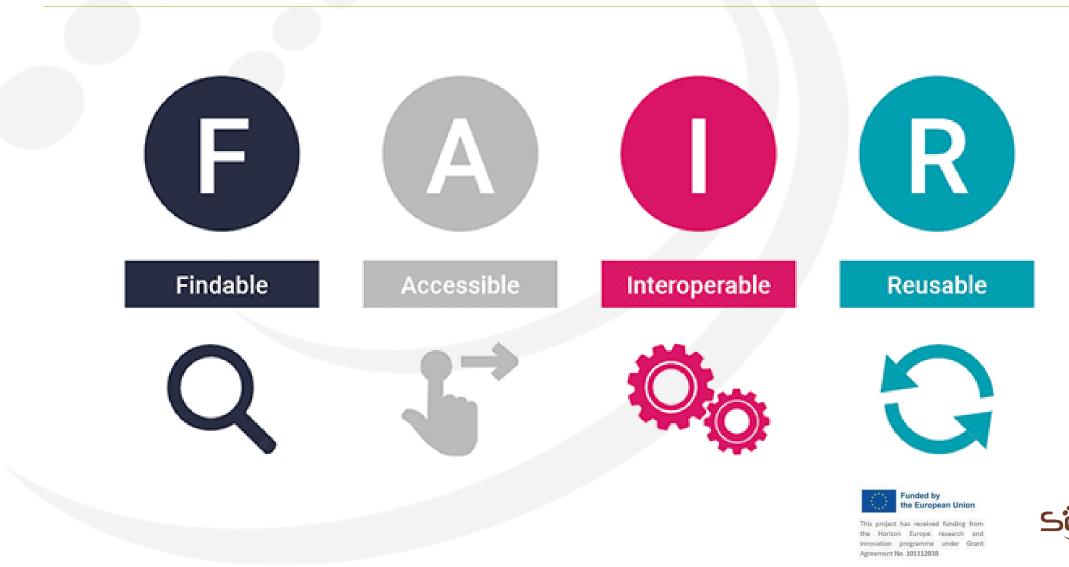
This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

Real life

- Try to imagine it is not always easy for data providers to provide easily accessible, usable data soil data & knowledge
- Lack of standardised, accessible data
- Findability challenge
- Fragmentation
- Data reusability
- Inefficiencies

Agreement No. 10111283

under Grant


And why is that a problem?

- Billions of euros are invested in research on the assumption it is adding to the knowledge base towards improving soil health
- Research isn't always used or built on beyond the lifetime of funded projects research is done over and over again – wasting time and resources.
- Earlier investments are made without necessarily requiring good practice or penalizing a lack of good practice in data management and sharing in the contractual agreements

What is FAIR data?

ise

KNOWLEDGE & DATA FLOW

Benefits of FAIR data

- Increased efficiency
- Increases innovation
- Cost savings

£10.2B could be saved

EU: Implementing FAIR data principles could save a minimum of £10.2 billion annually by reducing inefficiencies.

0.1-1.5% of GDP in socio-economic benefits
 OECD: Data access and sharing can generate socio-economic benefits worth between 0.1% and 1.5% of GDP for public sector data and 1% to 2.5% for private sector data.

\$796.0B investment generated Human Genome Project: investment in making available well-structured data generated \$796 billion in economic impact and created approximately 310,000 jobs, driving the genomic revolution.

s project has received funding from Horizon Europe research and ovation programme under Grant reement No 101112838

SoilWise aims to support the EUSO with evidence on soil data and knowledge in Europe

> WRB

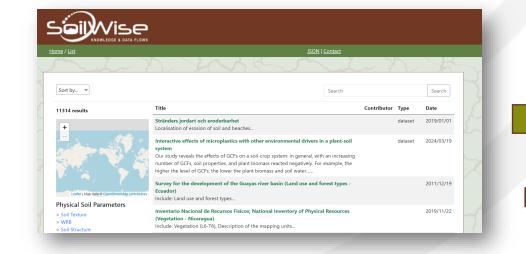
Status quo:

Soil data and knowledge islands with some bridges between them

Foreseen:

soil data and knowledge evidence easily discoverable at one place

has received funding from innovation programme under Grant Agreement No 101112838



Which type of stakeholder are you?

But also:

Data provider

- End-users with specific needs within the projects already running
- As researchers with future needs
- As projects that will come after, representing the research community at large

This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

Main message

To develop a useful and functional Soil Data and Knowledge Infrastructure, the collaboration efforts (and benefits from the outcomes) need to be mutual for all involved stakeholders (EUSO and Mission Soil Horizon projects' end-users included)

his project has received funding from he Horizon Europe research and movation programme under Grant greement No 101112838

What is in it for you?

- One place to look for knowledge and data about soil
- Improved search, standardisation and findability of information about soil, FAIR
- By providing **feedback** you help us create a **platform that fits your needs** as a data provider and/or a data user
- This platform can **help you in your every-day work** whenever you need to use soil information
- This platform can **facilitate collaboration** between organisations, networks, people

his project has received funding from he Horizon Europe research and nnovation programme under Grant Igreement No 101112838

Current **PROOF OF CONCEPT** main frontend – Metadata Catalogue

me / <u>List</u>	JSON Contact		
mary y	1 martin		AC-
Sort by 🗸	Search		Search
11314 results	Title	Contributor Type	Date
+	Stränders jordart och eroderbarhet Localisation of erosion of soil and beaches	dataset	2019/01/01
	higher the level of (3) is the lower the plant bight	dataset	2024/03/19
Leaflet Map data © OpenStreetMap contributors	Survey for the development of the Guayas r Ecuador) Include: Land use and forest types		2011/12/19
Physical Soil Parameters			
> Soil Texture > WRB > Soil Structure	(Vegetation - Nicaragua) Include: Vegetation (L6-T6); Description of the mapping unit		

Development since April 2024

This project has received funding from the Horizon Europe research and innovation programme under Grant Agreement No 101112838

an Union

Foreseen SoilWise Repository Endpoints

For soil data users For data scientists/coders

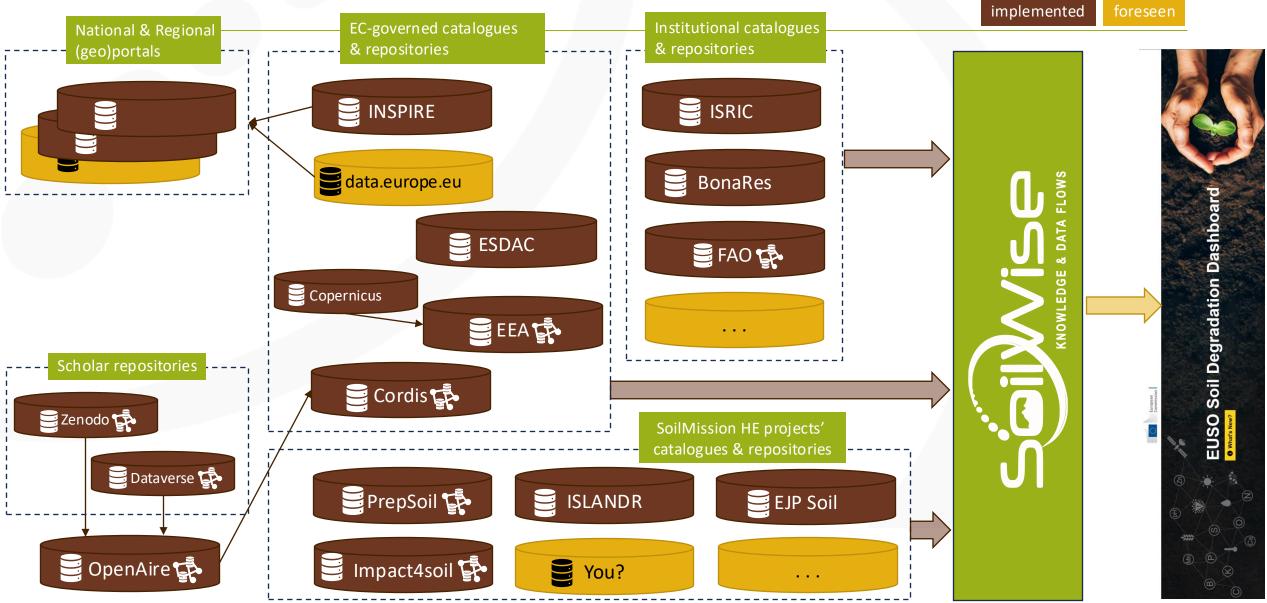
Still in development

This project has received funding from the Horizon Europe research and nnovation programme under Grant Agreement No 101112838

A single discovery experience

Requires:

- Mechanisms to import from various sources
- Harmonize metadata models
- Clustering of sources (filters)
- Ranking mechanisms (which source is more relevant)
- Maintain (or establish) linkage between sources
- Establish trustworthiness


How can we do better than a generic search engine?

nis project has received funding from e Horizon Europe research and novation programme under Grant greement No 101112838

We collate from the following sources at least:

How can you judge if data is suitable for your purpose?

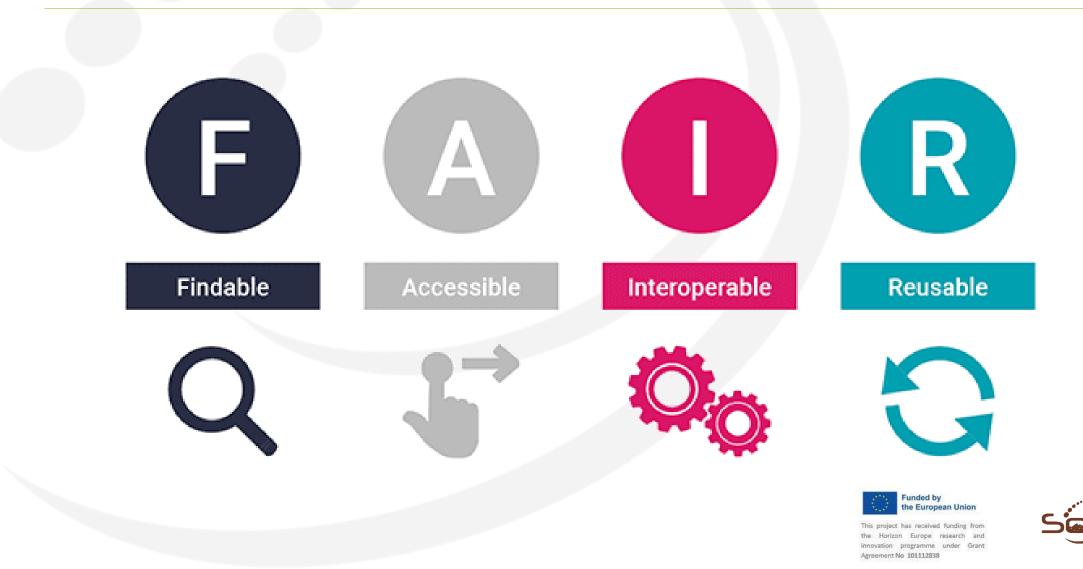
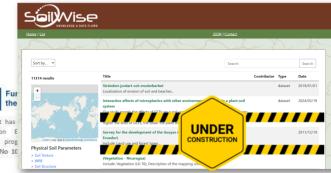


Image adopted from: http://biosistemika.com

F Findable: Discover existing data


Findable

Step 1 is to find what is already existing, e.g. through an easily searchable catalogue, as complete as possible on the domain.

Clear links to project and other soil related sources

SoilWise/EUSO will allow to find, assign and provide project and other soil domain results to users, including credits.

A Accessible: Can I use the data or are there access restrictions?


Check the access conditions (Access rights)

Step 2 is to see if the data can be used by you/for your purpose.

restricted

registration needed

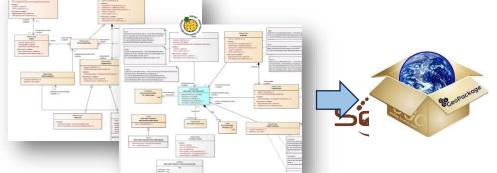
Accessible

SoilWise/EUSO requires a license to be indicated, and is looking into controlled access mechanisms CC-BY 4.0 license

no conditions apply

Use open access when possible, or ask owner for access

I Interoperable: Can I compile different datasets easily into one?


Apply my or a common data model

Step 3 is to understand if the data is organized in a similar way, if different datasets can easily be combined, or if transformations are needed.

Interoperable

SoilWise/EUSO aims to point to standard data models for providers and facilitate easy tooling for transformation of data to the extent possible

R Reusable: Is it clear what is in the data?

R

Clearly described datasets, using metadata

Step 4 is to understand what is in the data, how have they been collected, are they usable for another purpose

Reusable

G

SoilWise/EUSO aims to harmonise metadata structure, perform checks on the completeness of metadata and augment if possible

 Broken links
 Synonyms
 Duplicates

 Context derived additional metadata
 Empty fields
 Image: Context derived fundition funder funder

